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Abstract

Purpose — Carbon trading mechanism has been adopted to foster the green transformation of the economy
on a global scale, but its effectiveness for the power industry remains controversial. Given that energy-related
greenhouse gas emissions account for most of all anthropogenic emissions, this paper aims to evaluate the
effectiveness of this trading mechanism at the plant level to support relevant decision-making and mechanism
design.

Design/methodology/approach — This paper constructs a novel spatiotemporal data set by matching
satellite-based high-resolution (1 x 1km) CO, and PM, 5 emission data with accurate geolocation of power
plants. It then applies a difference-in-differences model to analyse the impact of carbon trading mechanism on
emission reduction for the power industry in China from 2007 to 2016.

Findings — Results suggest that the carbon trading mechanism induces 2.7% of CO5 emission reduction and
6.7% of PM, 5 emission reduction in power plants in pilot areas on average. However, the reduction effect is
significant only in coal-fired power plants but not in gas-fired power plants. Besides, the reduction effect is
significant for power plants operated with different technologies and is more pronounced for those with
outdated production technology, indicating the strong potential for green development of backward power
plants. The reduction effect is also more intense for power plants without affiliation relationships than those
affiliated with particular manufacturers.
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Originality/value — This paper identifies the causal relationship between the carbon trading mechanism
and emission reduction in the power industry by providing an innovative methodology for identifying plant-
level emissions based on high-resolution satellite data, which has been practically absent in previous studies.
It serves as a reference for stakeholders involved in detailed policy formulation and execution, including
policymakers, power plant managers and green investors.
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1. Introduction

Global climate change has long been a significant threat to sustainable development and
thus calls for collective action at the international level to achieve the net-zero emissions
target. Although nearly 200 countries have recommitted to Paris Climate Agreement on the
COP26, the collective action still finds it easy to fall short of reality due to the classic
dilemma of free riding. While neither the cost nor benefit of fulfilling the climate promise is
equally distributed across countries, most of them may have incentives to rely on others’
emissions reduction efforts without playing their roles (Nordhaus, 2015). Moreover, in the
current complex international environment where the staggering COVID-19 pandemic,
Russian—Ukraine conflict and slow transformation of energy structure are intertwined, the
supply of clean energy still falls behind a rising demand in energy for boosting economic
recovery. Given this circumstance, energy-related carbon emissions that plummeted during
the early outbreak of COVID-19 have rebounded ever stronger to an annual record-high level
of 36.3 billion tonnes with a yearly growth rate of around 6% in 2021, where coal-fired
power plants supplied half of the increase in worldwide electricity demand (International
Energy Agency, 2022; Ray et al, 2022). As there is no one-size-for-all solution to
environmental damages, it requires more immediate and effective domestic efforts to
regulate carbon emissions under a renewed international consensus.

Among all policy tools, market-based climate policy is essential for addressing the dilemma
between economic growth and carbon emissions control. The market-based climate policies, in
contrast to the command-and-control policies that set strict standards and ignore the costs for
compliance with emissions control, provide economic incentives for stakeholders to reduce
emissions and allocate resources more efficiently. According to the literature, market-based
policies in many forms, such as market-based instruments, environmental taxes and emissions
trading, are considered more effective and efficient than command-and-control policies in
reducing compliance costs and removing information asymmetry (Pan et al, 2022a).
Meanwhile, carbon trading-related policies play a leading role among the diverse options in
market-based policies. They ensure that the environmental goal is met, and the tradable
allowances allow individual emissions sources to set their own compliance path (Goulder, 2013,
Gu et al.,, 2022). Effectively designed carbon trading programmes provide high environmental
certainty, lower administrative costs and increase the accountability of reducing, tracking and
reporting emissions (Wang and Chen, 2015). According to World Bank, 65 carbon pricing
initiatives cover 47 countries worldwide as of April 2021, most of which are developed
countries. For instance, Japan introduced a voluntary emissions trading system in 2005 with
coverage over various sectors such as electricity production and distribution. Germany
launched the German Combustibles Emissions Trading Act in 2021, extending the sector
coverage from mainly the large industrial facilities and power plants set by the European
emissions trading system to the heating and transport sectors.

However, the developing countries have been cautious in adopting carbon trading-
related policies for the cause of low-carbon transition. On the one hand, the developing
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industrialisation in case of falling into the energy insecurity trap. On the other hand,
domestic pressures are mounting in the developing countries, as the climate policy may lead
to a welfare loss (Gavard ef al.,, 2016). Especially in the fossil-fuel-dependent countries such
as China, India and Venezuela, the costs of climate policies may result in potential social
instability and economic inequality. Doubtlessly, managing domestic climate challenges is
crucial, but the question for the developing countries is how. Considering that most of the
developing countries are at different levels of economic status, it is vital to make use of the
coordination between government intervention and the market power (Zhou and Wang,
2022). In other words, by combining top-to-down and up-to-top approaches, the developing
countries may find their respective ideal pathways towards green development. It is thus
essential to conduct in-depth analyses of the emission reduction effects of the carbon trading
mechanism.

Nevertheless, the extant literature hardly captures the corporate performance under
governmental intervention. Existing studies mainly adopted country/province/city-level
evidence to investigate the effectiveness of the carbon trading scheme (for example, Wang
et al., 2015; Zhao et al., 2017; Chen et al., 2019) or discussed the impact of the carbon trading
scheme on decreasing carbon pollution, technology innovation and related aspects (for
example, Clarkson et al, 2015; Pan et al, 2022b; Xiao et al, 2021). Even few studies
exclusively examine how the carbon trading mechanism impacts certain firms’ performance
in a given sector and, more importantly, whether the corporates’ response brings benefits in
alleviating both carbon emissions and air pollution. Hence, it is of great academic and
practical importance to identify the effects of the carbon trading mechanism. As one of the
largest developing countries and suppliers of Certified Emission Reduction primary market,
China has pledged to a goal of reaching the carbon emissions peak by 2030 and carbon
neutrality by 2060. To this end, it has made substantial efforts to accelerate decarbonisation
represented by implementing the carbon trading pilot mechanism in 2011. It showcases a
shift towards market-based policy, emphasising on corporate participation as a supplement
to the traditional industrial policy, such as China’s Five-year plans. Additionally, given
China’s solid efforts in combating climate challenges may provide references to its
developing counterparts on how to deal with carbon emissions reduction by giving a full
play to government-market cooperation, it would be crucial to examine whether these
attempts are successful as designed.

To bridge the research gap, this study investigates how the market-based environmental
regulation influences the coordinated reduction of CO5 and PMs 5 from 2007 to 2016 based
on plant-level emissions, taking China’s carbon trading pilot mechanism as a quasi-natural
experiment. The empirical results indicate that the carbon trading mechanism induces 2.7 %
of CO5 emission reduction and 6.7% of PMs 5 emission reduction in power plants in pilot
areas on average, implying that the market-based policy encourages the synergy of
pollution reduction. However, the reduction effect showcases heterogeneity across
corporates. It is statistically significant only in coal-fired power plants but insignificant in
their gas-fired counterparts. Furthermore, the reduction effect is significant for power plants
operated with different technologies but is more pronounced for those with outdated
production technology, indicating the strong potential for green development of power
plants with backward technologies. The reduction effect is also more intense for power
plants without affiliation relationships than those affiliated with particular manufacturers.

This paper contributes to the existing literature from the following three perspectives.
Firstly, we newly constructed a nationwide plant-level emissions panel data set based on
high-resolution satellite data from 2007 to 2016, revealing the locations and identities of
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plant-level emissions in China. Secondly, we apply the difference-in-differences (DID)
method to investigate the influence of market-based environmental regulation on dual-track
pollution reduction (i.e. CO, and PMy5) based on spatially-nuanced plant-level evidence,
bridging gaps in earlier research. Finally, we further investigate the heterogeneity of power
plant characteristics in terms of fuel, electricity generation technology, ownership structure
and affiliation relationship. The heterogeneity analyses provide empirical evidence about
enterprise response to and participation in emissions reduction, thus shedding light on the
effectiveness of carbon emission trading policy.

The remaining of this paper is arranged as follows. Section 2 briefly reviews the relevant
literature. Section 3 presents the research design. Section 4 delves into the empirical results,
followed by a further discussion. Section 5 concludes with policy implications.

2. Literature review

The causal relation between carbon trading schemes and carbon emissions reduction has
aroused considerable attention in recent years. Extant literature is undertaken mainly from
the following two perspectives.

Existing literature delves into the market-based policy for greenhouse gas emissions
against the background of climate challenges and further discusses how it accelerates the
low-carbon transformation. In fact, the market-oriented mechanism includes diverse forms
such as price-based programmes in demand response, cap-and-trade programmes and
carbon-trading mechanisms, which would lead to varying environmental outcomes. Wu
et al. (2020) showed that market-based environmental regulations significantly improved
regional eco-efficiency. Zhou and Wang (2022) found that the carbon emissions trading
mechanism was beneficial to green technology innovation, which would be enhanced by
environmental legislation and development strategy. In turn, it would improve the
performance of carbon emission reduction (Rogge et al, 2011). Given that the market-
incentive mechanism pays off mainly by encouraging corporates to participate in carbon
emission reduction activities, it induces the companies to adjust their business strategy and
strengthen the carbon emissions reduction effect (de Groot et al, 2001; Zhao et al., 2018).
Besides, Xie et al. (2022) discussed the impact of the Chinese carbon trading mechanism in a
specific sector. They pointed out that the pilot programme led to a structural upgrading in
the power generation technology, which would help overcome carbon emission constraints.

Some scholars are inclined to adopt regional emissions data to measure the
environmental costs of the carbon trading scheme. It sheds light on how carbon pricing and
related policies impact the green transformation. Yang ef al. (2021) used Chinese province-
year data and found that the environmental outcomes of China’s carbon emissions reduction
policy varied across provinces. Fleschutz ef al. (2021) indicated that price-based demand
response caused an increase in CO, emissions using European country-specific empirical
data. Liu et al. (2021) found that China’s carbon trading programme alleviated the air
pollutant emissions level of PMs 5 based on city-level monthly data, extending the existing
study of climate policy’s negative impact on greenhouse gas emissions and air pollution.

Although the existing literature has gone to great lengths about the effectiveness of
carbon trading mechanisms in reducing greenhouse gas emissions, certain issues still need
to be addressed. Firstly, previous literature has limited choices of indicators to measure
carbon emissions reduction with a precise concentration on the country/province/city-
specific data. Given that carbon emissions could result from a variety of sources other than
the firm that owns power plants, using merely macro-level panel data to analyse the impact
of the carbon trading mechanism on corporate performance may be insufficient. Secondly,
previous studies mainly focus on a particular aspect of the carbon trading mechanism’s
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carbon emissions reduction, air pollution alleviation and power generation technology
structure. Yet most of them fail to consider the co-benefits of reducing both carbon and air
pollution emissions, thus neglecting the synergy effect of the carbon trading program.
Finally, some scholars are inclined to assess the carbon trading mechanism but pay little
attention to a particular sector, especially the power sector, which has long played a
significant part in Chinese carbon trading programmes. It thus requires an in-depth study
taking the Chinese power sector as a sample.

To bridge these research gaps, this paper provides an innovative and pragmatic
methodology for identifying plant-level emissions of CO, and PMy5 based on high-
resolution (1 x 1km) satellite data. We then apply the DID method to examine the carbon
trading mechanism’s reduction impacts in the power industry and further discuss its
heterogeneous effects according to company characteristics.

3. Methodology

3.1 Data and variable definition

3.1.1 Plant-level CO» and PM 5 emissions. The main variables of interest include CO5 and
PM,5 emission, which are obtained by matching two satellite-based high-resolution
emission databases, the Open-source Data Inventory for Anthropogenic CO, (ODIAC)
database and the Tracking Air Pollution in China (TAP) database with the geographic
location of power plants in China provided by Global Power Plant database developed and
maintained by World Resources Institute. The Global Power Plant database collects
information about the exact location, power generation capacity, operational status,
production technology, fuel and other relevant power plant data from official government
data, independent sources and crowdsourced data (World Resources Institute, 2018). This
database has proven reliable in the literature, and the detailed information on power plants
enables this paper to perform in-depth heterogeneity analyses of power plants’ responses to
the carbon trading mechanism (Gotzens et al.,, 2019; Brinkerink et al., 2021).

CO, and PM; 5 emission data are, respectively, provided by ODIAC and TAP databases.
The ODIAC database integrates data collected from satellite-based night-time light sensors
with power plant emission profiles to estimate the spatial extent of fossil fuel CO, emissions
on a global scale (Oda and Maksyutov, 2011; Oda et al., 2018). This fuel-emission-centred
estimation strategy also reduces the errors generated by non-anthropogenic emission
sources and by emission sources other than fuel consumption, which is out of the scope of
this paper (Chen et al., 2020). Meanwhile, the TAP database estimates the PMs 5 emission in
China based on a two-stage machine learning model coupled with the decision-tree-based
gap-filling method and synthetic minority oversampling technique (Geng et al.,, 2021; Xiao
et al., 2021). Both databases cover the whole geographic area of China at least five years
earlier and later than the policy experimentation and have high resolutions of 1 x 1km.
Since all three databases use a unified (World Geodetic System) 84 geographic coordinate
system, it is feasible to match the exact geographical locations of power plants with the
emission data to obtain plant-level data without significant errors, as shown in Figure 1.

The matching processes are accomplished with QGIS, a free and open-source geographic
information system software, and manual data-checking is performed to ensure data
accuracy. In all samples, data missing or significant errors occur only in a small portion of
the sample (=~ 2%) and should not be problematic after manual data-checking, which
verifies the position of locations and cells with ground-level images from the base map
provided by Google Earth. Using the best available data from the abovementioned database,
we construct a comprehensive CO, and PM, 5 emission data set that allows for prediction or
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Figure 1.
[lustration of
matching the
geographical location
of power plants with
high-resolution
emission data

ODIAC Database TAP Database

Notes: The red cross mark indicates the power
plant’s location, and the rectangular indicates a cell
in the raster data. For these two databases, a cell
covers an area of 1x1 km. The colour of the cell is
the visualisation of emission data: the brighter the
colour, the more intense the respective type of
emissions in the cell. The base map is provided by
Google Earth, and the map, the raster data, and the
locations of power plants are matched by latitude
and longitude based on WGS 84 geographic
coordinates system

causal inference related to the emissions of power plants. With updated fuel statistics and
satellite data, it is possible to expand the timeframe of the data set. But it is noteworthy that
the facility size of the power plant may change dramatically due to construction, termination
of operation or many other reasons. Meanwhile, it is possible that more than one high-
pollution facilitates operate in the same cell, which may cause the plant-level emissions to be
aggregated in the data of the respective cell. It is thus of great importance to evaluate the
endogeneity problem and the omitted variable bias when performing analyses on plant-level
emission data.

3.1.2 Carbon trading mechanism. The policy framework of the carbon trading
mechanism was first developed in October 2011 according to the “Notice on Carrying out
Pilot Carbon Emissions Trading”, which was issued by the National Development and
Reform Commission. In the pilot areas, which include Guangdong province, Hubei province,
Beijing, Shanghai, Tianjin, Chongqing and Shenzhen, carbon emissions allowances/quotas
are allocated to firms according to their respective output, and specific benchmarks apply
for some industries, such as power and high-technology industries. Based on the relevant
literature, the policy-shock dummy variable is defined as zero for time periods before 2012
and is defined as one for time periods equal to or after 2012 (Wang et al., 2019; Qi et al., 2021;
Dong et al, 2022). For the treatment-group dummy variable, the value one is given if the
power plants are located in the pilot area; otherwise, the value zero is given.

However, some literature suggests an alternative time-setting method of policy shock
since the starting times of the carbon trading markets are different for each pilot area (Zhou
et al., 2019; Yu and Li, 2021; Zhang et al., 2022). Shenzhen became the first city to initiate the
trading market in June 2013, followed by Shanghai and Beijing in November 2013, then
Guangdong, Hubei, Tianjin and Chongging in June 2014. Therefore, the policy-shock
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periods equal to or after 2014 in the robustness test.

3.1.3 Control variables. The omitted variable bias and endogeneity problem should not
be of great concern in this paper because the scope of research is power plants: the policy-
making processes are exogenous to the plant-level decision-making, and few variables
correlate with both pilot area selection and plant-level CO, and PM, 5 emissions. However,
we add the following control variables by referring to the literature:

» electricity generation capacity of power plants;
¢ green finance development level,
» ventilation coefficient [1]; and

» research input of the area (Li ef al, 2017; Jiao et al., 2018; Kogak and Ulucak, 2019;
Chen et al., 2020; Lee and Lee, 2022).

3.2 Sample and data source

To reduce the bias generated by unobservable factors, the control group consists of the power
plants located in provinces that are geographically surrounding the pilot areas, and the treatment
group includes those located in the pilot areas [2]. Meanwhile, it is necessary to exclude emission
reduction unrelated to the carbon trading mechanism to minimise the estimation bias. Hence,
only samples that strictly match all of the following conditions are included in the estimations:

» the power plant is active during the sample time period;

 the facility size of the power plant remains at a constant level during the sample
period, i.e. no new unit starts productive operation, and no existing unit retires;

¢ no remarkable changes in power output; and

¢ no other high-pollution facilities are located in the same cell, as the plant-level
emissions are aggregated in this scenario.

The timeframe of this paper is set as 2007—2016 to increase the number of observations
while mitigating the omitted variable bias with strict filtering conditions. After filtering, 110
power plants in 20 provinces/centrally-administered municipalities are included in the
sample, in which 21 power plants operate in the pilot area, as shown in Figure 2.

The definitions and data sources are summarised in Table 1, and summary statistics are
reported in Table 2. It should be noted that the data set cover power stations with different
electricity generation capacity and emission levels. Besides, the research input and green
financial development level are much higher in pilot areas than in non-pilot areas, which
shows that a selection preference in policy experimentation. In other words, the government
tend to choose better-developed areas to conduct the policy experimentation, which may
distort the estimation of policy impact if the advantageous market conditions are not
controlled. This phenomenon provides the theoretical foundation for the inclusion of control
variables in estimations.

The logarithm form is used in estimation for the emissions data of CO, and PM, 5 as well
as the ventilation coefficient since these variables are positively skewed. Table 3 reports the
correlations between control variables. The correlation coefficients between some variables
are close to 1 and highly statistically significant. To address concerns related to the
multicollinearity problem, the variance inflation factor (VIF) test is conducted. The results of
VIF are reported in Table 4. Given that the VIF values of all independent variables are less
than 5, it can be concluded that the multicollinearity problem is not substantial in this paper.
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CO2 emissions distribution PM:.s emissions distribution

Notes: The shaded areas are pilot areas, and unshaded areas are

Figulje 2. not pilot areas but are included in the sample. The red cross
Location of sampled marks indicate the locations of power plants in the pilot areas,
power plants and and the blue cross marks indicate the locations of power plants
CInISsIons outside the pilot areas but included in the sample. The deeper the
distribution . .
colour, the higher the emissions
Category Definition Source
Dependent co2 Plant-level CO, emission data (million tons) ~ ODIAC database
variable pm25 Plant-level PM, 5 emission data (ug/m®) TAP database
Dummy pilot 1 for the pilot area, 0 for the non-pilot area -
variable policy 1 for time periods equal to or after the year -
2012, 0 for before 2012
Independent capacity Installed electricity generation capacity of Global Power Plant database
variable power plants (MW)
Table 1 greenfin  Green finance development index (1-10) China Statistical Yearbook,
able 1. . rd_gdp  R&D expense/GDP (%) China Insurance Statistical
Summary of variable Yearbook, Statistical Yearbooks
definition and data of Sample Provinces
sources ven Ventilation coefficient Global Environmental Database
3.3 Model specification

The following standard DID model is constructed to estimate the causal impacts of the
carbon trading mechanism on power plants’ CO, and PM, 5 emissions. The DID model
is a common method for assessing the causal effects of policies or events, and its
applications in environmental economics and energy economics are fruitful (Elrod and
Malik, 2017; Ghosal et al., 2019; Najjar and Cherniwchan, 2021). The discrepancy
between the different areas before initiating the carbon trading mechanism can be
mitigated by analysing the difference between the CO, and PM, 5 emissions of the
non-pilot areas and their pilot counterparts both before and after the policy
implementation. The baseline model is specified as follows:

€02 = By + By x pilot; x policy; + a x Xy 4 w; + ¢, + it @)



Carbon trading

Variable Obs Mean SD Min Max .
mechanism on

Panel A: Full sample power

co2 1,100 2.702 2.705 0.132 15.590 indust

pm25 1,100 68.492 24.783 13514 150.742 maustry

capacity 1,100 678.785 694.219 50.000 3,970.000

greenfin 1,100 1.668 0.809 0.711 6.921

rd_gdp 1,100 1.610 0.884 0.207 6.014

ven 1,100 1,233.230 283.856 632.295 2,418.158

Panel B: Pilot area sample

€02 210 2.880 3.271 0.344 15.590

pm25 210 65.875 26.434 21.224 134.451

capacity 210 774.071 930.608 150.000 3,970.000

greenfin 210 2.469 1.091 0.852 6.921

rd_gdp 210 2.406 1.210 1.193 6.014

ven 210 1,126.406 375.880 773.027 2,418.158

Panel C: Non-pilot area sample

co2_origin 890 2.660 2.553 0.132 13.492

pm25_origin 890 69.109 24.352 13514 150.742

capacity 890 656.301 624.125 50.000 2,560.000

greenfin 890 1.479 0.585 0.711 2.939

rd_gdp 890 1.422 0.660 0.207 2619 Table 2.

ven 890 1,258.436 251.117 632.295 1,726.304  Summary statistics

Variable capacity greenfin ven rd_gdp

capacity 1

greenfin —0.042 1

ven 0,016 0.135%% 1 Table 3.

rd gdp —().085%** 0.849%x% 0.174%%% 1 Corr.ela‘aon

coefficients of

Note: ***Significant at 1% variables

Variable VIF 1/VIF

capacity 1.01 0.99

greenfin 3.60 0.28

rd_gdp 3.67 0.27 Table 4.

ven 1.03 0.97 Variance inflation

Mean VIF 2.33 factor test

pm25; = By + By x piloty x policyy + a x Xy + w; + ¢ + &

@

where 7 denotes power plants and ¢ denotes years. The coefficient B, of the cross-term pilot x
policy captures the causal effects of interest. Xj; refers to a set of control variables as defined
above. The year fixed effect u is used to control unexpected impacts over time, and the plant
fixed effect ¢ is added to control unobservable factors that change across power plants but
remain constant across time periods. &; is the error term. The Driscoll-Kray errors are used
in estimations to correct heteroskedasticity and autocorrelation. Besides, the logarithm form
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Table 5.
Baseline regression
results

is used in estimation for the emissions data of CO, and PM, 5 as well as the ventilation
coefficient since these variables are positively skewed.

4. Results and discussions

4.1 Baseline regression results

The baseline results of estimating the impact of the carbon trading mechanism on Chinese
power plants’ emissions are presented in Table 5. The coefficient of the interactive term
policy x pilot in column (1) is significantly negative at the 1% level, indicating that the CO,
emissions at the power plant level decreased by 2.2% in the pilot areas after implementing
the carbon trading mechanism. This result holds after adding control variables. The
coefficient in column (3) is also significantly negative at the 1% statistical level, while
the coefficient value changes considerably after adding control variables into the model.
The result in column (4) indicates that the PM, 5 emissions of power plants in the pilot areas
arereduced by 6.7% due to policy effects. These results imply that the carbon trading policy
generates substantial co-benefits of carbon emissions reduction and air pollution control in
the power industry. Considering the strong emission intensity of the energy industry in
China, such plant-level emission reduction effects are highly considerable.

For control variables, the results generally meet our expectations, and some conclusions
can be reached. Intuitively, the electricity generation capacity of a power plant is
significantly and positively related to its CO, and PMy5 emissions. Meanwhile, green
finance development also contributes to the control of CO, and PM,5 emissions.
Nevertheless, ceteris paribus, increasing regional research input may only decrease the PMs 5
emissions at the power plant level, with little effect on CO, emissions. In the meanwhile, the
ventilation coefficient is not statistically significant.

4.2 Robustness analysis

4.2.1 Parallel trend test. The parallel trend test is used to visualise the trend between the
pilot and non-pilot areas over time to rule out the possibility of non-policy-related factors
influencing CO, and PM2.5 emissions trends. Figure 3 illustrates the trends of CO, and
PM, 5 emissions, respectively. It finds that before the policy implementation, the gap in CO,
emissions between the two areas remains constantly significant, and the gap in PMyg
emissions is constantly small. The pattern of the two trends changed after the carbon

1) @ ©) )
Variable CO, CO, PM,5 PM; 5
policy x pilot  —0.022%%* (=5.799) —0.022%%F (—6.458)  —0.171%** (—4.676) —0.067*+%* (—8.284)
capacity 0.021%%% (52.317) 0.006%%% (7.792)
greenfin —0.004** (—2.368) —0.034** (—2.559)
ven —0.042 (—1.097) 0.083 (1.106)
rd_gdp 0.000 (0.169) —0.271%%% (—6.493)
_cons 140345 (1.26e + 13) 4.324%%% (8 56¢ + 13)
Plant FE Y Y Y Y
Year FE Y Y Y Y
N 1,100 1,100 1,100 1,100
r2 0.974 0.974 0.737 0.797

Notes: f-values in brackets; models are estimated with Driscoll-Kray errors; **significant at 5%,
**kgignificant at 1%
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2011 2016

Year

2007

2016

2011
Year

—e— Pilot ——e —- Non-Pilot —e— Pilot ——e —- Non-Pilot

CO2 PM2s

emission programme was implemented in 2011. Thus, it could be concluded that the parallel
trend holds for the two variables.

4.2.2 Setting different policy time. Considering the lagged effects of policy implementation,
an alternative policy-shock dummy variable policy2 is used in estimation for additional
robustness checks. Table 6 shows that the estimation results with alternative policy time-
setting are generally consistent with the baseline results. The coefficients of the DID estimators
policy2 x pilot are statistically significant at 1% level, but the value of coefficients decreases on
a certain scale, indicating the diminishing marginal utility of the policy effects.

4.2.3 Placebo test. Since it is impossible to incorporate all applicable regulations related
to the emissions of power plants in the estimations, a placebo test is conducted based on
randomly assigned “false” pilot areas. According to baseline results, the carbon trading
mechanism effectively reduces both CO, and PMs5 emissions. Thus, the placebo test
includes both variables for all areas. If the policy effects do exist, the coefficient of the mimic

) 2) 3) “

Carbon trading
mechanism on
power
industry

Figure 3.
Parallel trend test

Variable CO, CO, PM5 PM; 5
policy2 x pilot  —0.016%* (—3.094) —0.013* (=2.005) —0.157*** (—3.656) —0.066%** (—4.775)
capacity 0.021%#* (47.678) 0.006*** (6.315)
greenfin —0.004** (—2.594) —0.026* (—1.879)
ven —0.028 (—0.652) 0.120 (1.384)
rd_gdp —0.008 (—1.603) —0.291%%* (—8.561)
_cons 14.034*** (1.26e + 13) 4.3247%* (8,54e + 13)

Plant FE Y Y Y Y

Year FE Y Y Y Y

N 1,100 1,100 1,100 1,100

r2 0.974 0.974 0.723 0.797

Notes: t-values in brackets; models are estimated with Driscoll-Kray errors; *significant at 10%, **significant

at 5%, ***significant at 1%

Table 6.
Robustness check:
alternative policy
dummy variable
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Figure 4.
Placebo test

interactive term policy2 x pilot is expected to be statistically insignificant (Brewer et al,
2018; Wing et al., 2018).

The DID analysis based on equations (1) and (2) is performed 500 times with randomly
assigned 10 areas, and the estimated coefficients and their respective p-values are plotted in
Figure 4. As most of the estimated coefficients generated in the placebo test are centred
around zero and deviate significantly from the predicted coefficients in baseline regression
(—0.022%%F and —0.067**%*), it indicates that the placebo test provides additional evidence
that the baseline DID results and conclusions are robust.

4.2.4 Counterfactual test. To further test the robustness of the results, a counterfactual test is
implemented. The periods prior to the introduction of the carbon trading mechanism are selected
as the hypothetical year when the mechanism is counterfactually introduced. If under the
hypothetical scenarios, the DID estimator is not statistically significant, it can be concluded that no
systematic differences between the emissions of the control group and the treatment group exist
after removing the impact of the carbon trading mechanism. Therefore, policy2009 x pilot and
Dolicy2010 x pilot are introduced into the regression, which indicates the policy implementation
years are set to 2009 and 2010. The results of the counterfactual test are reported in Table 7.

The results show that the coefficients of policy2009 x pilot and policy2010 x pilot are not
significant for both CO, and PM, 5 emissions, indicating that before the introduction of the
carbon trading mechanism, there does not exist substantial changes in the CO, and PMs5
emissions of the power plants in the pilot areas compared to those in non-pilot areas. It thus
rules out the possibility that factors which were in play before the introduction of the carbon
trading mechanism triggered the result of this paper and further verifying the robustness of
the baseline regression findings.

4.3 Heterogeneity analysis
The emission control behaviours differ in power plants with different fuels, electricity
generation technologies, ownership structures and affiliate relationships. Further heterogeneity
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Variable C02 PM2_5 COZ PM2_5
policy2009 x pilot 0.004 (0.583) —0.053 (—0.665)

policy2010 x pilot 0007 (~1184)  —0.036(—1573)
capacity 0.021%¥* (49.191) 0.006%** (6.615) 0.0217#* (47.035) 0.006%** (6.347)
greenfin —0.007 (—3544)  —0.044%% (—2,618)  —0.007 (—3360)  —0.044%* (—2.586)
ven —0.023 (—0.558) 0.119 (1.436) —0.028 (—0.652) 0.117 (1.340)
rd_gdp —0.013%5 (—3304) 02805 (—7.069)  —0.007* (—1881) —0.284%* (—7.621)
Plant FE Y Y Y Y

Year FE Y Y Y Y

N 1,100 1,100 1,100 1,100

r2 0.974 0.794 0974 0.793

Carbon trading
mechanism on
power
industry

Notes: t-values in brackets; models are estimated with Driscoll-Kray errors; *significant at 10%, **significant
at 5%, ***significant at 1%

Table 7.
Counterfactual test
results

analyses are thus conducted based on the power plant data that is manually collected or
provided by the Global Power Plant database.

4.3.1 Fuel and technology heterogeneity. Intuitively, power plants with different fuels
and different electricity generation technologies produce different levels of CO, and PMy
emissions, so as the difficulties in achieving emission reduction. As emission control is
gaining acceptance, efficiency improvement, as the prominent practical tool capable of
reducing CO; and PM, 5 emissions from fossil fuel plants in the short-term, has become a
key concept for the choice of technology for new plants and upgrades of existing plants.

The sampled power plants can be categorised into two fuel types: coal-powered and gas-
powered. As for electricity generation technologies, only the combined cycle technology is
available for gas-powered plants, while two different technologies are available for coal-
powered plants: subcritical and supercritical. The latter is generally considered the more
advanced technology. Subcritical units have power generation efficiencies of between 33%
and 37%, whereas efficiency ratings for supercritical coal plants range from 37% to 40%.
The increase in efficiency also leads to reductions in emissions given the same level of power
output (Gonzalez-Salazar et al., 2018; Rasheed et al, 2021; Whitaker et al., 2012). Empirical
evidence shows that the chemical looping combustion-based supercritical and ultra-
supercritical units are energetically, exegetically, environmentally and economically
advantageous plants for power generation compared to the other variants (Surywanshi
et al, 2019). As a result, the impacts of the carbon trading mechanism might be vastly
diverse based on the fuel and electricity generation technologies of the power plants. The
estimation results of each fuel and electricity generation technology are reported in Table 8.

It finds that the carbon trading mechanism generates significant impacts on coal-power
plants, and in particular, coal-power plants with outdated production technology
(subcritical). The emission reduction effects are statistically insignificant for coal-powered
plants with comparatively more advanced production technology (ultracritical) and for
gas-powered plants.

Such a difference can be attributed to two reasons. On the one hand, the less-developed
electricity generation technology has more potential for emissions reductions, and thus the
policy impact is more significant. On the other hand, the quota calculation model for power
plants monolithically applies to all power plants with different production technologies. The
quota pressure on technologically disadvantageous power plants is more intense than on
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technologically advantageous power plants, so as the motivations to improve production Cgarbon trading
processes and to reduce emissions. Therefore, this phenomenon also calls for a more detailed  echanism on

and well-developed quota calculation system that motivates the green transformation of all
power plants in the power industry.

4.3.2 Ownership structure heterogeneity. According to the current literature, the
ownership structure of a company may also influence the effectiveness of environmental
regulations and policies. State-owned enterprises (SOE) can defy environmental policy with
their advantageous political position, i.e. “central protectionism”. The combination of such
protectionism and inadequate regulatory capacity in the environmental bureaucracy
provides motivations and possibilities for SOEs to violate environmental policies (Eaton and
Kostka, 2018; Ran, 2017). Empirical evidence shows that SOEs in the power industry
commit over 60% of reported violations (Eaton and Kostka, 2017). It is thus reasonable to
further look into the impact of the carbon trading mechanism on power plants owned by
SOEs. In China, most power plants are completed owned by SOEs, while a few plants are
jointly owned by SOEs and private companies (mixed-ownership) or exclusively owned by
private companies (private-ownership). In this paper, both mixed-ownership and private-
ownership are considered non-SOE-ownership since their organisational behaviours in
emission control are alike (Andersson ef al., 2018; Yuan et al., 2021).

As shown in Table 9, the emission reduction effects of the carbon emission trading
mechanism are significant for both SOE-owned and non-SOE-owned power plants. While
the reductions in CO5 emissions are of the same scale, the PMs 5 emissions reduction is more
substantial in SOE-owned power plants than that in non-SOE-owned power plants.

4.3.3 Affiliation relationship heterogeneity. The affiliation relationship of power plants
may also influence the emission reduction impacts of the carbon trading mechanism since
the quota can be shared with the parent company for power stations with affiliation.
Therefore, the incentives for affiliated plants in emission control are expected to be less
substantial compared to non-affiliated plants. The estimation results are reported in
Table 10, where one may find that the CO5 and PM, 5 emissions of power plants without
affiliation were reduced more than those of power plants with affiliation. This disparity also
calls for a more detailed quota calculation system for increasing the emission reduction
effects of the carbon trading mechanism.

Non-SOE SOE

@ @ ) &)
Variable COZ PM2A5 COZ PM2A5
policy x pilot  —0.022%%% (—8106)  —0.045%% (—2.846)  —0.022F%F (—4123)  —0.089%%* (—9.155)
capacity 0.035%#* (83.932) 0.008*#%* (7.429) 0.018%*#* (47.770) 0.005%** (8.266)
greenfin —0.005 (—1.680) 0.028*+* (3.803) 0.004* (2.069) —0.116™** (—3.634)
ven —0.021 (—0.960) 0.239%+* (3.996) —0.047 (—1.084) 0.064 (0.896)
rd_gdp —0002(~0266)  —0.301%% (—6.666) 0001 (0117)  —0.197%%* (—4.966)
Plant FE Y Y Y Y
Year FE Y Y Y Y
N 340 340 760 760
r2 0.987 0.860 0.970 0.778

Notes: f-values in brackets; models are estimated with Driscoll-Kray errors; *significant at 10%,
**significant at 5%, ***significant at 1%

power
industry

Table 9.

Heterogeneity
analysis: ownership

structure
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Table 10.
Heterogeneity
analysis: affiliation
relationship

Non-affiliated plants Affiliated plants

@ @ ) @)
Variable COZ PM2A5 COZ PMZS
Dpolicy x pilot —0.0247%%% (—7.494) —0.083*** (—6.977) —0.018* (—2.056) —0.034** (—2.636)
capacity 0.019%*+* (67.867) 0.006**%* (9.009) 0.050%** (20.907) 0.010*** (3.686)
greenfin —0.002 (—1.151) —0.027%* (—2.283) —0.009 (—0.863) —0.048 (—1.373)
ven —0.033 (—1.114) 0.027 (0.376) —0.092 (—0.966) 0.274%* (2.513)
rd_gdp —0.004 (—1.217) —0.257#*%* (—6.613) 0.011 (1.203) —0.310%** (—5.595)
Plant FE Y Y Y Y
Year FE Y Y Y Y
N 890 890 210 210
r2 0.978 0.789 0.966 0.854

Notes: f-values in brackets; models are estimated with Driscoll-Kray errors; *significant at 10%,
**significant at 5%, ***significant at 1%

5. Conclusion and policy implications

Extant research has expressly emphasised the importance of the carbon emissions reduction
against the background of global climate change. Carbon trading mechanism has been
developed for curbing carbon emissions by highlighting the corporate viability under the
market-based regulation on a global scale. This paper delves into the reduction impacts of the
carbon trading mechanism in China and its heterogeneity under different corporate
characteristics by using Chinese plant-level evidences from 2007 to 2016 in the power industry.
We find consistent evidence that the carbon trading mechanism promotes carbon emission
reduction, which is in accordance with previous studies. Furthermore, this paper adds to the
body of knowledge in these areas by demonstrating that the lowering impacts of carbon
trading mechanisms are accompanied by co-benefits such as reduced carbon emissions and air
pollution. The findings are resilient to the heterogeneity of corporate when we take the main
characteristics of power plants into consideration. Additionally, we find that the reduction
effects are more pronounced in the coal-fired power plants with outdated production
technologies or in power plants with no affiliation relations with particular manufacturers. It
suggests that the carbon trading mechanism should be highly recommended in the developing
countries as it pays off by encouraging corporate viability in reducing pollutant emissions.

Our research also leads to policy implications as follows. First, policymakers should attach
more importance to the coordination of government policies and market mechanisms so as to
accelerate the upgrading of both energy structure and industrial structure in response to the
global climate challenge. Second, they may also consider monitoring the reduction effects of the
carbon emission reduction-related policy from a micro perspective, especially at the plant level,
which would provide more detailed information regarding the actual environmental outcomes.
Finally, design and improve the carbon trading mechanism by borrowing relevant experience
from other developing countries so as to attract more investors and experts while expanding
the types of trading instruments available to increase the carbon market’s efficacy.

Notes

1. Ventilation coefficient refers to the product of mixing depth and the average wind speed. It’s an
atmospheric state that shows pollution potential or the atmosphere’s capacity to dilute and
disseminate pollutants throughout an area (Sujatha et al., 2016; Saha et al., 2019).



2. The following provinces/centrally-administered-municipalities are defined as pilot areas Carbon trading

according to the policy framework: Beijing, Shanghai, Tianjin, Guangdong and Hubei. No
available sample is located in Chongqing, and Shenzhen is a part of Guangdong Province. The
following provinces surrounding the pilot areas are included in the data set as non-pilot areas:
Anhui, Fujian, Guangxi, Guizhou, Hainan, Hebei, Hunan, Jiangsu, Jiangxi, Shaanxi, Shanxi,
Sichuan and Zhejiang.
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